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1 IntroductionThe rank-revealing QR factorization (RRQR Factorization) is a valuabletool in numerical linear algebra, because it detects the numerical rank of amatrix and because it provides the necessary information to solve many rank-de�cient least-squares problems, namely, accurate information about rank andnumerical nullspace. The RRQR factorization takes advantage of the e�ciencyand simplicity of the QR factorization, yet it produces information that is almostas reliable as that computed by means of the more expensive singular valuedecomposition.Its main use arises in the solution of rank-de�cient least-squares problems,for example, in geodesy [15], computer-aided design [19], nonlinear least-squaresproblems [24], the solution of integral equations [12], and in the calculationof splines [18]. Other applications arise in beamforming [5], spectral estima-tion [23], and regularization [20,21,28].We brie
y summarize the properties of a rank-revealing QR factorization.Let A be an m � n matrix A (w.l.o.g. m � n) and with singular values�1 � �2 � : : : � �n � 0; (1)and de�ne the numerical rank r of A with respect to the threshold � as thenumber of singular values strictly greater than � : �r > � � �r+1. Also, let Ahave a QR factorization of the formAP = QR = Q�R11 R120 R22� ; (2)where P is a permutation matrix and Q has orthonormal columns. We thensay that (2) is a RRQR factorization of A if the following three properties aresatis�ed:1. R11 is an r � r matrix with condition number of the order �1=�r,2. kR22k2 is of the order �r+1, and3. r is the numerical rank of A.Whenever there is a well-determined gap in the singular value spectrum between�r and �r+1, and hence the numerical rank r is well de�ned, then the RRQRfactorization (2) reveals the numerical rank of A by having a submatrix R22with elements of the order �r+1 and a well-conditioned leading submatrix R11.We note that recently Stewart suggested a rank-revealing complete orthog-onal factorization, the so-called URV decomposition [27]. This factorizationdecomposes A = U � R11 R120 R22 �V T ;2



where U and V are orthogonal and both kR12k2 and kR22k2 are of the order�r+1. In particular, compared with the RRQR factorization, URV decomposi-tions have a general orthogonal matrix V instead of the permutation matrix P .URV decompositions are more expensive to compute, but they are well suited fornullspace updating. RRQR factorizations, on the other hand, are more suitedfor the least-squares setting, since one need not store the orthogonal matrix V(the other orthogonal matrix is usually applied to the right-hand side \on the
y"). Of course, RRQR factorizations can be used to compute an initial URVdecomposition, where U = Q and V = P . We also note that the matrixPT � R�111 R12�I � ;which can be easily computed from (2), is usually a good approximation of thenullvectors, and a few steps of subspace iteration su�ce to compute nullvectorsthat are correct to working precision [10].An algorithm for computing an RRQR factorization was discovered inde-pendently by Foster [13] and Chan [8]. Their idea is �rst to compute any QRfactorization of A and then to post-process the triangular factor R to \peel o�"the small singular values of A one at a time. Their algorithm has the additionalproperty that �min(R(1 : k; 1 : k)) � �k(A); k = r; : : : ; n; (3)where �min(A) is the smallest singular value of a matrix A.This property, however, is not important for most applications of RRQRfactorizations [10], where one is interested only in capturing the break between\large" and \small" singular values. In this paper, we propose a block methodthat gives up (3), but can identify several small singular values at a time andwill capture the break between \large" and \small" singular values.Our paper is organized as follows. In Section 2 we describe how we computean initial estimate of the numerical rank using incremental condition estimation(ICE) and how we can use ICE to arrive at cheap estimates for the nullvectors ofleading triangular submatrices. In Section 3 we introduce our block algorithm,which will identify a rank-revealing permutation by essentially computing arank-revealing orthogonal factorization of the nullvector matrices generated byICE. In Section 4 we show that this scheme is guaranteed to capture the breakbetween \large" and \small" singular values, under very weak assumptions forthe orthogonal factorization applied to the nullvectors. In Section 5 we dis-cuss implementation aspects of the algorithm and elaborate on design tradeo�s.In particular, we motivate the computational savings that can result from a\good" initial QR factorization. In Section 6 we present some numerical exper-iments and compare the numerical results of our algorithm with the unblockedChan/Foster scheme. In Section 7, we summarize our results.3



2 Deriving a Rank Estimate from the Initial QR FactorizationIn this section we describe how we compute an initial guess of the numericalrank r of A using some initial QR factorization of A. To this end, we useincremental condition estimation (ICE) [2, 6], a condition estimation schemedesigned to give approximations to the smallest or largest singular value andthe corresponding left singular vector of a sequence of increasingly larger uppertriangular matrices.Using the formulation of [6], we can describe the key step in ICE for com-puting approximations to the smallest singular value as follows. We are givenan upper triangular matrix Rk 2 <k�k and a vector xk 2 <k with kxkk2 = 1 sothat xTkRk = dTk and �k � kdkk2 � �min(Rk). That is, xk is a good approxima-tion of the left singular vector of Rk associated with its smallest singular value.We then �nd sk = sin�k and ck = cos�k such that kdk+1k2 is minimized, where(dk+1)T = (xk+1)TRk+1 = � skxkck �T �Rk v0 
 � ; (4)and then �k+1 = kdk+1k2 is taken to be an estimate of �min(Rk+1). As shownin [2,6], (sk; ck) and �k+1 can be computed in O(k) 
ops. ICE also provides foran e�cient and reliable method for computing approximations to right singularvectors of the triangular matrixR: If xk is an approximate left singular vector ofRk, then yk � R�1k xk=kR�1k xkk2 is a corresponding approximate right singularvector of Rk, because the computation of R�1k xk corresponds to \one half" stepof inverse iterations with RkRTk . Moreover, if �k is small, then 
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2 =kRkykk2 implies that the vector �yk0 � is an approximate nullvector of R. Thenumerical experiments from [2,26] suggest that this scheme is a reliable meansfor computing good approximations to �min(Rk+1). In particular, the estimatesfor �k derived from yk (i.e., after applying one backsolve to the initial ICEvector) were always found to be correct to one digit [6].ICE is well suited for monitoring the smallest singular value and conditionnumber of the leading triangular factor during the computation. Given an initialQR factorization AP = QR;and a threshold � separating \small" and \large" singular values, we can use ICEto cheaply compute an initial estimate of the numerical rank of A with respectto � . To this end, we monitor the smallest singular values �k of the leadingtriangular submatrices R(1 :k; 1 :k) for k = 1; : : : ; n, using the ICE scheme justdescribed. We note that in general �k will be estimated as the QR factorizationis computed, because of the incremental nature of ICE. This property of ICEis crucial for the implementation of restricted pivoting schemes, where column4



exchanges in the initial QR factorization are restricted to \computationallyconvenient" ones [1,3,4,5].We recall that the �k's form a nonincreasing sequence of lower bounds forthe corresponding singular values �k(A); that is,�k � �k+1:Moreover, if the �k's are the exact singular values, then�k � �k(A):The number ~r of lower bounds �k strictly greater than the threshold � ,�1 � : : :� �~r > � � �~r+1; (5)is therefore guaranteed to be a lower bound for the numerical rank r. Further,we are guaranteed that R(1 : ~r; 1 : ~r) is well conditioned because its smallestsingular value is greater than � . In practice, the �k's that we compute by meansof ICE are only estimates of the exact singular values; but one the other handthese estimates are so good that we need not distinguish between exact singularvalues and the estimates.Rank-revealing QR factorizations are motivated by the following lemma,which is proved in [10].Lemma 1 For any R 2 <n�n and any W = �W1W2� 2 <n�p with a nonsingularW2 2 <p�p, we havekR(n� p+ 1:n; n� p + 1:n)k2 � kRWk2 kW�12 k2: (6)This means that if we can determine a matrix W with p linearly independentcolumns, all of which lie approximately in the nullspace of R (i.e., kRWk2 issmall), and if W2 is well conditioned such that (�min(W2))�1 = kW�12 k2 is notlarge, then we are guaranteed that the elements of the bottom right p� p blockof R will be small.By applying ICE to the initially computed QR factorization, we compute alower bound ~r of the numerical rank of A and an upper trapezoidal matrixX = �� x~r+10 � ; : : : ; xn� 2 <n�(n�~r) (7)(that is, each xk has as many zeros appended as are needed to arrive at ann-vector). By solving RY = X and normalizing the columns of the uppertrapezoidal matrix Y , we now obtain a set of approximate right nullvectors Ythat satisfy kRY k2 � kRY kF =  nXi=~r+1 �2i!1=2 � �pn� ~r:Thus, if the bottom triangular part Y2 of Y is well conditioned, then (6) guar-antees that we have found an RRQR factorization.5



3 A Block Algorithm for Finding Rank-Revealing PermutationsLemma 1 implies that the computation of a rank-revealing QR factorizationhinges on �nding a permutation P such that the smallest singular value of thebottom block W2 of the nullspace matrix W of AP is reasonably large. Thispoint is also crucial if we wish to be sure that the �k are close to the �k, due tothe following Theorem:Theorem 2 ([8]) Let W (i)2 denote the bottom (n� i+ 1)� (n� i+ 1) block ofW . Also, let �i � �min(R(1 : i; 1 : i)) and �i � kR(i : n; i : n)k2. Then the i-thsingular value �i of A satis�es�ipn� i + 1 k(W (i)2 )�1k2 � �i � �i � �i � �ipn � i + 1 k(W (i)2 )�1k2 : (8)To obtain an RRQR factorization for the special case p = 1 (i.e.,W in (6) isa vector, and i in Theorem 2 is n�1), one can take W to be the singular vectorvn corresponding to the smallest singular value of R and P the permutationthat brings the largest element (in modulus) of vn to the last position [14]. Thischoice then guarantees that j rnn j � pn�min(A).This idea was extended by Foster [13] and Chan [8] to higher dimensions,namely the case p > 1. The idea is to \peel o�" the small singular values of Rone by one: for i = n; n � 1; : : : ; r one computes the right null-vectors y(i) ofincreasingly smaller i � i triangular submatrices. One then applies a left cyclicshift of columns j through i of R, where j is determined fromjy(i)j j = ky(i)k1:This changes the triangular structure of R into upper Hessenberg form, in thesense that a lower bidiagonal appears from column j through column i. Thetriangular form of R is then restored by means of Givens rotations. It is shownin [9] that in this fashion we produce a matrix of approximate nullvectorsW thatsatis�es k(W (i)2 )�1k2 < pn 2n�i; and hence the bounds in (8) are guaranteed tobe tight as long as p = n � r is not too large. Experimental results show thatthis a-priori bound is rather pessimistic, and this conclusion goes along withrecent results by Hong and Pan [22] which show that there exists a permutationmatrix P such that for the triangular factor R partitioned as in (2) we havejjR22jj2 � �r+1(A)pr(n� r) + min(r; n� r) ; (9)and �min(R11) � �r(A) 1pr(n� r) +min(r; n� r) : (10)No practical algorithm is known, however, for computing this particular permu-tation P . 6



The extra work in the Chan/Foster-algorithm, beyond the initial QR factor-ization, is O((n � r)n2). In essence, for each of the n � r small singular valuesof A, it requires some triangular solves for the computation of y(i) and someGivens rotations to reduce the Hessenberg matrix back to triangular form.In our approach, we construct a well-conditioned W2 several columns ata time. Remember that through a triangular solve with the ICE vectors weobtained an upper trapezoidal matrix Y 2 <n�(n�~r) whose columns are ap-proximations to the nullvectors of R(1 : i; 1 : i); i = ~r + 1; : : : ; n and henceapproximate nullvectors of AP . If we can now �nd a row permutation � and awell-conditioned p � (n� ~r) bottom block of �Y ,(�Y )(n � p+ 1 : n; 1 : n� ~r); p � n� ~r;then a QR factorization of R�T is guaranteed to have a small trailing p � pblock. If we set p = 1, we obtain exactly the unblocked strategy. The main ad-vantage of using p > 1 is that we capture all the small singular values that arewell approximated by the current QR factorization, whereas the unblocked al-gorithm would require several (compute nullvectors + update QR factorization)iterations to achieve the same e�ect.As a result, the block approach is likely to require much fewer triangularsolves (which are comparatively expensive for sparse matrices and parallel ma-chines). We also have many more choices as to what permutations we employ.As will be seen in Section 5, this freedom allows one to reduce the work re-quired for updates of the triangular factor and to increase the computationalgranularity of the orthogonal updates.Before we present the outline of the block algorithm,we give some thought asto how we can generate a row permutation � that generates a well-conditionedbottom block in �Y . Consider the orthogonal factorization�Y = ZH; (11)where Y and Z are upper trapezoidal, that is, they have the form0BBBBBBBB@ � � �� � �� � �� � �� � �� � �0 � �0 0 �1CCCCCCCCA :� is a permutation matrix, and H is orthogonal. Now de�ne E(l) to be an l� l\exchange matrix", for example,E(4) = 0BB@ 0 0 0 10 0 1 00 1 0 01 0 0 0 1CCA ;7



and let Er be shorthand for E(number of rows of Y ), and Ec be short forE(number of columns of Y ). Then the factorization (11) is equivalent to(EcY TEr)(Er�TEr) = (EcHTEc)(EcZTEr); (12)and now (EcY TEr) and (EcZTEr) have the form � � � � � � � �0 � � � � � � �0 0 � � � � � �! ;that is, (12) is a QR factorization, whose objective is to �nd a column per-mutation that isolates a leading well-conditioned submatrix in (EcY TEr). Inessence, this is another (though somewhat weaker) rank-revealing QR factor-ization. Hence, through \
ipping Y around", we are in a position to use therank-revealing strategies we are already familiar with.To generate a permutation � we assemble Y T and then 
ip its rows andcolumns to arrive at an upper triangular matrix~Y = (EcY TEr): (13)We then compute the QR factorization~Y ~� = ~H ~Z; (14)such that ~Z has a well-conditioned leading triangular submatrix. Comparing(11), (12), and (14), we immediately see that� � Er ~�TEr: (15)As our block size p we choose the size of the largest leading triangular blockof ~Z , whose smallest singular value is larger than a threshold �Z . A leadingtriangular block in ~Z corresponds to a trailing triangular block inZ � (Er ~ZTEc): (16)As our p nullvectors we now choose the last p columns of Z, normalized to unitnorm. This scaling could change the smallest singular value of Z, so one mightadd the additional condition that the norm of the �rst p columns be close to1, but we found this to be naturally the case in our experiments; the smallestsingular values of the last p columns of Z before and after scaling were essentiallyidentical.We also mention in passing that one could look at this problem as a \subsetselection" problem [14, 17], where one strives to identify the p most linearlydependent columns in Y , but subset selection algorithms are more expensivethan the approach suggested here.We are now ready to present an outline of our block algorithm in Fig-ure 1. After computing an initial QR factorization, we repeatedly compute8



1. Compute an initial QR Factorization: AP = QR.Use ICE to compute �k � �min(R(1 : k; 1 : k))and approx. left singular vectors xk, k = 1; : : : ; n.2. Initial rank estimate: ~r argmax1�k�nf�k > �g3 nlast  n; W  [ ].4. repeat5. Y  R(1 :nlast; 1 :nlast)�1�� x~r+10 � � � � xnlast�.Form ~Y as de�ned in (13).6. Compute permutation ~� and QR factorization ~Y ~� = ~H ~Zsuch that �min( ~Z(1 : p; 1 : p)) � �Z for some 1 � p � nlast � ~r.7. Form Z as de�ned in (16).Let Zp be the last p columns of Z, normalized to have unit norm.8. Form � as de�ned in (15), and update the matrix of approximate nullvectors:W  ��Zp0 � ;�� 00 I �W�.9. Update QR factorization:compute ~Q and ~R such that R(1 :nlast; 1 :nlast)�T = ~Q ~R10. R � ~R ~QTR(1 : nlast; nlast + 1 : n)0 R(nlast + 1 : n; nlast + 1 : n)�Q Q� ~Q 00 I �; P := P ��T 00 I �.11. nlast  nlast � p;12. Use ICE to compute �k � �min(R(1 : k; 1 : k)) and approx. leftsingular vectors xk, k = 1; : : : ; nlast for the updated R.13. New rank estimate ~r  argmax1�k�nlastf�k > �g14. until (~r = nlast)Figure 1: An outline of the block RRQR algorithm.9



lower bounds on the rank of A and peel o� blocks of small trailing submatri-ces by identifying well-conditioned submatrices in our current nullspace matrix.Since the smallest singular value of the leading p� p block of ~Z is the same asthe smallest singular value of the trailing p�p block in Z, our algorithm ensuresthat each bottom p�p block of Zp (computed in step 7) has a smallest singularvalue that is not smaller than some threshold �Z . The matrixW formed in step9 will be upper trapezoidal, and the smallest singular value of each diagonalblock will be at least �Z . For example, when n = 10, r = 4, and we requirethree block steps, identifying p = 1; 3; 2, respectively, W will have the form0BBBBBBBBBBBB@ � � � � � �� � � � � �� � � � � �� � � � � �+ + � � � �0 + � � � �0 0 + + + �0 0 0 + + �0 0 0 0 + �0 0 0 0 0 +1CCCCCCCCCCCCA ;where for emphasis the three diagonal blocks have been indicated by plusses.So far we have not detailed which strategy we shall use to generate a well-conditioned leading triangular block in the QR factorization of ~Y . This is pri-marily an implementation issue, although an important one. We shall comeback to this issue in Section 5.4 Theoretical Aspects of the Block AlgorithmIn this section we show that the algorithm described in the previous sectiondoes indeed compute the desired RRQR factorization. Speci�cally, we shallshow that1. at every block step we are always able to �nd at least a one-by-one well-conditioned subblock in ~Y ; and2. if each of the diagonal blocks ofW2 has a reasonably large smallest singularvalue, the same is true for W2 itself.Hence our block algorithm will terminate in at most (n� ~r(0)) steps, where ~r(0)is the rank estimate derived from the initial QR factorization, and the boundsin (8) will be tight.The �rst issue is easily resolved by the following lemma.Lemma 3 Let ~Y be an k� l (k � l) matrix with rows of unit norm. Then thereexists a permutation ~� such that in the QR factorization ~Y ~� = ~H ~Z, where ~His orthogonal and ~Z is upper triangular, we havej z11 j � max1�j�lk~Y (:; j)k2 � 1=pl:10



Proof. If ~� is a permutation that exchanges rows 1 and j, the absolute value ofz11 will be k~Y (:; j)k2, and the �rst inequality of the lemma follows immediately.For the second inequality, note that since the rows of ~Y are normalized, any rowof ~Y contains an element whose absolute value is not smaller than 1=pl, and asa result the maximum column norm of ~Y will be greater than 1=pl. 2.The bound in the lemma is pessimistic, in that max1�j�l k~Y (:; j)k2 is usuallysigni�cantly greater than 1=pl, but it shows that we shall make progress in ouralgorithm as long as we permute a column of ~Y with a reasonable large norminto the �rst position, independent of whether the rest of the factorization of ~Ycaptures the large singular values of ~Y or not. This also shows that in the worstcase we shall extract only one small singular value of R at every step, just as inthe unblocked algorithm.In our algorithm, we base the determination of ~r on the lower bounds �k for�k. This is justi�ed, as long as �~r � �~r, that is, as long as the bounds in (8)are tight. To show this, we establish a bound on the smallest singular value ofW2, the bottom (n� ~r)� (n� ~r) submatrix of W constructed in the algorithmof Figure 1.Theorem 4 Let W2 be a block upper triangular matrix whose columns havenorm at most one, and with diagonal blocks Z(J); : : : ; Z(1), where Z(j) is of sizepj and �min(Z(j)) � �Z ; j = 1; : : : ; J . ThenkW�12 k2 � (pp1 + 2) � � � (ppJ�1 + 2) k(Z(1))�1k2 � � � k(Z(J))�1k2: (17)Proof. Consider the square block matrixD = �A B0 C � all whose columns havenorm at most one. The inverse of D is given by D�1 = �A�1 �A�1BC�10 C�1 �,and thereforekD�1k2 � kA�1k2 + kC�1k2 + kA�1k2 kBk2 kC�1k2� (kA�1k2�1 + kC�1k2�1 + kBk2) kA�1k2 kC�1k2: (18)If pB denotes the number of columns of B, we readily obtain kBk2 � kBkF �ppB . Consider now kA�1k2�1, which is identical to the smallest singular valueof A. As a result of the interlacing inequalities for singular values, it followsthat kA�1k2�1 is less than or equal to the norm of any column of A, and thuskA�1k2�1 � 1. The same holds for kC�1k2�1. Hence, we obtainkD�1k2 � (ppB + 2)kA�1k2�1kC�1k2�1: (19)Applying this bound recursively, we immediately arrive at (17). 2Using this result, we can now show that the bounds for �~r and �~r+1 at thetermination of our block algorithm are tight bounds.11



Theorem 5 LetW2 denote the bottom (n�~r)�(n�~r) submatrix ofW obtainedat the termination of our block algorithm. Then�~r3 (n� ~r + 1) kW�12 k2 � �~r � �~r (20)and �~r+1 � kR(~r + 1:n; ~r+ 1:n)k2 � �~r+1pn� ~r kW�12 k2: (21)Proof. Equation (21) was proved in [8, Theorem 3.1]. To prove (20), imaginethat we perform one more step of the block post-processing scheme, with a �xedblock-size of one (i.e., one step of the Chan/Foster algorithm). The bottomelement of the right nullvector produced in this imaginary step is numericallygreater than or equal to pn� ~r. If we left-append W with this nullvector toform �W = � �W1�W2� with �W2 2 <(n�~r+1)�(n�~r+1), then we have from [8, Theorem3.1]: �~rpn � ~r + 1k �W�12 k2 � �~r � �~r:If we then apply Eq. (18) to �W2, we immediately obtain (20). 2Theorems 4 and 5 ensure that the bounds (20) and (21) will be tight as longas the diagonal blocks Zj of W2 are well conditioned, and as a result we shallcorrectly capture the numerical rank.5 Implementation ConsiderationsIn this section we discuss implementation issues of the block RRQR algo-rithm. In particular, we show the following:1. Some (if only very restricted) column exchanges in the initial QR factor-ization are useful in preventing pathological underestimates of the initialrank.2. Applying column pivoting to the columns that were rejected by ICE inthe initial QR factorization helps in obtaining an initial Y that capturesmany of the small singular values, and hence increases the likelyhood of alarge block size p in the �rst block iteration.3. The structure of the permutations employed in the QR factorization (14) of~Y has a signi�cant impact on the cost of the update of the QR factorizationof R(1 : nlast; 1 : nlast)�T (step 9 of the algorithm).If we do not allow any pivoting at all in the initial QR factorization of A,then our algorithm will not be e�ective in the (rare) cases where the very �rstrows of A are linearly dependent. The following example illustrates this fact.12



Let A have numerical rank r = n� 1, and let the very �rst column of A consistof elements of size �n. Then ICE correctly determines that the smallest singularvalue of all the leading principal submatrices of R are small, so the rank estimatefrom ICE is ~r = 0, and this leads to a �rst block step of block-size p = n. Eventhough we can hope to get a only well-conditioned 1 � 1 block in ~Y , the QRfactorization (14) would be that of an n� n matrix.In order to avoid such a pathological underestimate of the initial rank, weshould use some column pivoting strategy that tries to maintain leading tri-angular matrices in R reasonably well conditioned and permutes columns thatwould make R too ill-conditioned to the back. The issue of computing an ini-tial QR factorization with approximate RRQR structure has been considered indetail by Bischof and Hansen [4], and it has been shown there how ICE can beadvantageously employed in this context. Schemes tailored to factorizations ofdense matrices on various architectures are described in [1,3].Let us now consider some issues related to the construction of the �rst Ymatrix in the block algorithm. In computing the initial QR factorization of A,after ~r steps we arrive at a situation whereAP = Q� R11 R120 ~A22 � : (22)R11 is upper triangular of size ~r, and ICE tells us that the smallest singularvalue of any larger leading submatrix would be less than � . That is, columns~r+1; : : : ; n ofAP are considered linearly dependent with respect to the threshold� . We now have the choice of completing the QR factorization (22) eitherwithout any further column exchanges, or by applying some column pivotingbased on ~A22. This decision does not change our choice of ~r, but we can greatlyimprove our chances of obtaining a well-conditioned (n� ~r)� (n� ~r) submatrixY2 � Y (~r + 1:n; :).To illustrate this aspect, consider the following example. Assume that inthe partially completed QR factorization (22), after reducing the �rst columnof ~A22, the next diagonal element (~r + 1; ~r + 1) of R becomes zero. Then thesmallest singular value of all leading submatrices of R is zero, and the vector�R�111 R12(:; 1)�1 � ; (23)appended with an appropriate number of zeros, is the corresponding nullvector.As a result, all the n� ~r columns of the nullspace matrix Y assembled by ICEwill consist of duplicates of the vector (23) appended with zeros. Hence, therank of this nullspace matrix is one, leading to a block size of one in the �rstiteration. If, on the other hand, we apply a pivoting strategy to ~A22 that triesto maintain leading well conditioned triangular matrices of the correspondingtriangular factor R22, then the smallest singular values of leading submatricesof R will not drop so quickly. Hence, the assembled ICE vectors are much more13



likely to be linearly independent, and the �rst block size is therefore likely tobe close to n� ~r.Another issue that warrants attention is the column exchanges employedduring the orthogonal factorization of Y (step 6 of the block algorithm). Thestructure of the column exchanges employed in the factorization of ~Y determinesthe structure of �T , and hence the cost of the QR factorization update of R�T .As is the case in the unblocked Chan/Foster algorithm, we prefer permu-tations �T consisting of a sequence of left cyclic shifts. If �T is the productof p such shift permutations, then the matrix R(1 : nlast; 1 : nlast)�T in step9 has exactly p nonzero lower diagonals, and so the cost of the update is atmost O(pn2) 
ops. Note that by generating p lower bands, our block algorithmallows for the use of Householder transformations or block orthogonal transfor-mations [7,25], in reducing R�T back to triangular form, whereas the unblockedalgorithm is limited to Givens rotations.The following 10�10 example shows the structure of R(1 : nlast; 1 : nlast)�Tfor a block size of p = 2 and �T consisting of a left cyclic shift of columns 7through 10, followed by a left cyclic shift of columns 5 through 9 (the corre-sponding column permutations ~� of ~Y are a right cyclic shift of columns 1through 4 followed by a right cyclic shift of columns 2 through 6):0BBBBBBBBBBBB@ � � � � � � � � � �� � � � � � � � �� � � � � � � �� � � � � � �� � � � � �� � � � �� � � �� � �� �� 1CCCCCCCCCCCCA :R�T has two lower diagonals, starting from column 5. Obviously, the moreof the leading triangle of R is preserved in R�, the less the work involved inreducing R� back to triangular form. Thus, it is advantageous to restrict thepermutations applied in the QR factorization of ~Y to those that involve columnsthat are close to the beginning of ~Y .A strategy that can easily be implemented is threshold pivoting. In the k-thstep of the traditional column pivoting strategy [16]|cf. Eq. (22)|one choosesas pivot column j the column whose \residual" k ~A22(:; j)k2 is maximum. Inthreshold pivoting, the pivot column j is the closest column whose \residual" iswithin a factor �Y of max1�i�n�k k ~A22(:; i)k2.Another pivoting strategy one could employ to limit the extent of columnexchanges in ~Y is restricted column pivoting. Here, at every step, only a selectednumber of columns can be chosen as pivot candidates. In [4] it has been shownthat such a strategy is useful in computing approximate RRQR factorizations14
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.........Figure 2: 100� 100 matrix with staircase structurewhile preserving the sparsity structure of the initial matrix, and this strategycould be applied here as well.6 Numerical ResultsThis section illustrates some of the implementation issues, demonstrates thereliability of our algorithm, and compares it with the unblocked algorithm. Ourtest matrices were square matrices of order 100 and with a staircase structureas shown in Figure 2. Using PRO-MATLAB, we generated matrices of rankr = 80 and rank r = 95 with a geometric distribution of singular values between�1 = 1 and �r = 10�2, and also between �r+1 = 10�5 and �n = 10�7. There is awell-de�ned gap between \large" and \small" singular values, and our threshold� = 5�10�4 is chosen to lie within this gap. We generated �ve randommatrices ofrank 80 and 95 each. Since the orthogonal transformations we apply in obtaininga banded structure usually grade a matrix in that numerically small elementstend to appear in the lower right-hand corner, we generated �ve more testmatrices by \
ipping" those matrices, that is, we applied the exchange matrixE(100) to rows and columns. As a result, ifA has a small trailing submatrix, the
ipped version of A has a small leading submatrix. In the latter case it is muchharder to compute the rank-revealing structure, since the small submatrix hasto be transferred to the lower right hand side during the factorization processin order to reveal the rank.To avoid pathetic underestimates of the initial numerical rank, we employeda very restricted column pivoting strategy in the initial QR factorization: Weconsidered only the next �ve columns as candidate pivot columns, and in thatrestricted window, we applied threshold pivoting with a threshold of 10. Evenwith this very restricted pivoting strategy, the initial rank estimate is usuallyclose to the true rank. 15
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Figure 3: Histograms of kY �12 k2 for a set of 20 test-matrices, treatedwithout (top) and with (bottom) column pivoting among the \re-jected columns"To illustrate the bene�cial e�ect that column pivoting in ~A22 (see (22)) hason the norm of Y �12 , we considered two cases. In one case, we did not performany column exchanges in ~A22; in the other we applied the traditional columnpivoting strategy. Since ~A22 corresponds to the bottom block of the columnsthat the initial QR factorization considered \dependent", and hence permutedto the back, ~A22 is usually dense, and column pivoting introduces only negligibleextra overhead. Nonetheless, the e�ect on kY �12 k2 is considerable, as is shownin Figure 3 which displays histograms of the distribution of log kY �12 k2 for thetwo cases. The top histogram corresponds to the case where we did not employany column exchanges in the factorization of ~A22, and as a result we obtainsome fairly illconditioned Y2. In contrast, column pivoting in ~A22 leads to muchbetter conditioned Y2. Therefore, in our experiments, we always apply thetraditional column pivoting strategy to the \dependent" columns in the initialQR factorization.The measures of the quality of the RRQR factorization are� the computed relative gap �~r=�~r+1 (where �~r is the ICE-estimate of �~rand �~r+1 = kR(~r + 1 : n; ~r+ 1 : n)k2 is an estimate of �~r+1), and� the norm kW�12 k2 of the inverse of the bottom triangular block of thecomputed nullspace matrix W .The relative gap should be close to �r=�r+1 to ensure that we capture thecorrect numerical rank, and the gap between \large" and \small" singular values.kW�12 k2 should be as small as possible to ensure tight guaranteed bounds forthe estimates �~r and �~r+1, and a good approximation to the nullspace.16
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blocked: (rho_Z: 10 --, 25 -.) unblocked: -Figure 4: The computed relative gap �~r=�~r+1 using di�erent thresh-olds �Y and �Z in the blocked and unblocked algorithmsIn the block RRQR algorithm, we employ a QR factorization of Y withthreshold column pivoting, with thresholds �Y = 1 (i.e., the traditional strategyis performed), and �Y = 5. The same thresholds are also employed in Chan'sunblocked algorithm for deciding on the pivot column, i.e. one permutes columnk of R to the back if k = argmaxj f kyk1j yj j � �Y g;where y is the singular vector corresponding to the smallest singular value ofthe currently considered leading triangular submatrix. For the threshold �Z instep 6 of the algorithm, we experimented with�Z = 10:0; 25:0; 100:0:The parameter �Z has no equivalent in the unblocked algorithm.In Figures 4 and 5 we show the gap �~r=�~r+1, and the norm kW�12 k2 for theunblocked algorithm, and our block algorithm for �Z = 10 and �Z = 25. Theleft plot corresponds to choosing �Y = 1, the right one to �Y = 5. We see thatthe unblocked algorithm and the blocked one with �Z = 10 behave just aboutthe same, whereas �Z = 25 can lead to worse results. For �Z = 25 in some caseswe were content with the initial QR factorization, and the resulting peaks inkW�12 k2 are quite noticeable for �Y = 1. For �Z = 100:0 we always acceptedthe initial QR factorization, and in most cases we did not consider it su�cientlyrank revealing to be generally acceptable.17
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uence on the quality of our RRQR factoriza-tion, in that �Y = 1 leads to a relative gap �~r=�~r+1 consistently very close toits optimal value 103 and to very well conditioned W2's. The cost of these goodbounds is a signi�cant amount of pivoting and updating of the QR factorization(steps 9 and 10 of the algorithm). Typically, the pivot column for these test ma-trices was one of the very �rst columns of R. We also see that when we changethe threshold �Y to 5.0 in order to reduce the extent of column exchanges andthe cost of updating R�T , the quality measures deteriorate somewhat: kW�12 k2by a factor of about 10, with a more pronounced e�ect for the relative gaps.Nonetheless, we �nd they are still good enough to ensure the computation ofa reliable RRQR factorization. The deterioration of kW�12 k2 is due to the factthat more block steps are performed when �Y = 5. For example, for �Y = 5 theaverage number of block steps was 2.65, whereas it was 2.00 for �Y = 1. As The-orem 4 suggests, kW�12 k2 will deteriorate when more block steps are performed.For the block algorithm, there was no signi�cant di�erence in the number ofblock steps performed for the matrices of rank 80 or 95, while the unblockedalgorithm requires 20 and 5 steps, respectively. For all those algorithms, andessentially independent of the thresholds �Y and �Z , the norm kAWk2 was ofthe order 10�5.In all cases, the block algorithm identi�ed a large block in the �rst step, andthe average values for the size of the �rst block is shown in Table 1. Recall18



Table 1: Average Size of First Block�Y = 1 �Y = 5r = 80 16.6 16.2r = 95 4.2 2.9that the maximum possible block sizes are 20 and 5, respectively. It is notsurprising that the size of the �rst block is smaller when �Y is larger, sincethen we work less to identify a well-conditioned leading triangle. This resultcon�rms the computational bene�ts that we predicted for our block algorithm:While the unblocked algorithm has to identify each small singular value one byone, hence requiring n� r iterations where we compute a nullvector and updatea QR factorization, the block algorithm identi�es all those small singular valuesthat are well captured with the current QR factorization. Otherwise, we noticedmuch the same behavior, in that the same columns of A were permuted to theback, and this is borne out by the similar behavior of blocked and unblockedalgorithms in Figures 4 and 5. We also noticed that for both the unblocked andthe blocked algorithm, �Y = 5 led to a signi�cant decrease of the work.From these experimental results we draw the following conclusions:� The quality of the singular value estimates �~r and �~r+1, and thus thereliability of the rank estimate ~r, is quite sensitive to the size of kW�12 k2,that is, to the condition of the bottom triangular block of the null spacematrix W .� The fact that kAWk2 is small does not guarantee that one has obtainedan RRQR factorization.� A pivoting threshold �Y > 1 can signi�cantly reduce the amount of workfor updating R�T , at the expense of somewhat weaker bounds. A choiceof �Y = 5 seems to be adequate.� The threshold �Z has a large in
uence on the quality of the RRQR factor-ization. A threshold �Z = 10 seems to be adequate to guarantee a reliableRRQR factorization.� The �rst block in our block algorithm is usually by far the largest; thus, inthis step, the computational savings of the block algorithm are the mostpronounced.7 ConclusionsWe have presented a block algorithm for computing a rank-revealing QRfactorization. The algorithm is based on incremental condition estimation as a19



means for computing blocks of approximate nullvectors, which are then used toisolate blocks of the triangular factor with small norm. While the unblockedalgorithm peels o� the small singular values one at a time, thereby neglectingimplicit information about other small singular values already captured in thecurrent QR factorization, the block algorithm captures all small singular valuesthat are well approximated in the current QR factorization.We showed how we can generate well-conditioned triangular blocks in thenullspace matrix (and hence small trailing blocks in the triangular factor) bycomputing what is essentially a rank-revealing QR factorization of a suitablypermuted nullspace matrix. We also proved the correctness of this approach.We discussed implementation issues of this algorithmand compared one suchimplementation with the unblocked algorithm. As expected, the blocked algo-rithm behaves numerically like the unblocked one, yet it requires many fewerpasses. As a result, the block algorithm signi�cantly decreases the number of tri-angular solves employed and allows for the use of Householder transformations.This feature makes the block algorithm attractive for sparse matrices and forhigh-performance (in particular parallel) architectures, where triangular solvesand sequential Givens updates are expensive to implement.AcknowledgmentsWe thank Wolfgang R�onsch for his comments which greatly improved theinitial manuscript.References[1] Christian H. Bischof. A block QR factorization algorithm using restrictedpivoting. In Proceedings SUPERCOMPUTING '89, pages 248{256, Balti-more, Md., 1989. ACM Press.[2] Christian H. Bischof. Incremental condition estimation. SIAM Journal onMatrix Analysis and Applications, 11(2):312{322, 1990.[3] Christian H. Bischof. A parallel QR factorization algorithmwith controlledlocal pivoting. SIAM Journal on Scienti�c and Statistical Computing,12(1):36{57, 1991.[4] Christian H. Bischof and Per Christian Hansen. Structure-preserving andrank-revealing QR factorizations. SIAM Journal on Scienti�c and Statis-tical Computing, 12(6):1332{1350, 1991.[5] Christian H. Bischof and GautamM. Shro�. On updating signal subspaces.IEEE Transactions on Signal Processing, 40(1):96{105, 1992.[6] Christian H. Bischof and Ping Tak Peter Tang. Robust incremental condi-tion estimation. Preprint MCS-P225-0391, Argonne National Laboratory,Mathematics and Computer Science Division, 1991.20
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